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Abstract

We show the existence of harmonic maps associated with reductive homo�
morphisms of the fundamental group of a quasiprojective variety into a
linear algebraic group over an archimedean or p�adic �eld� The map we
construct may have in�nite energy� but it satis�es suitable estimates at in�
�nity� and it is pluriharmonic� We use this map to complete a previous
result of Jost�Yau 	
�� on strong rigidity of nonuniform lattices in Hermi�
tian symmetric spaces� and to drop a topological restriction in our previous
theory �	
��� 	
�� of representations of fundamental groups of quasiprojec�
tive varieties�
AMS�Code� �E
�

Introduction

Hodge theory represents cohomology classes by harmonic forms� and
it is a fundamental tool in K�ahler geometry� Homology or cohomology
groups� however� do not contain the complete topological information
about a manifold X � and� in particular� the fundamental group may be
much more complicated than the �rst homology group� its abelianized
version� indicates� Via the Albanese period mapping� the fundamental
group acts as a lattice on some vector space� This can be considered as
an abelian representation of ���X�� yielding the �rst homology group�
It is therefore natural to study also nonabelian representations of ���X��
in order to obtain further information about the topology of X � In the
same way as the Albanese period map is harmonic �which is essentially
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the Hodge theorem for ��forms�� one tries to associate to a nonabelian
representation a harmonic map u as well and to study the properties of
u� This has been done in work of Al	ber 
��� 
��� Eells�Sampson 
��� Siu

���� Jost�Yau 
���� 
���� 
���� Sampson 
���� Diederich�Ohsawa 
��� Cor�
lette 
��� Carlson�Toledo 
��� Hitchin 
���� Simpson 
���� Zuo 
��� 
����
Gromov�Schoen 
���� Mok�Siu�Yeung 
���� and many others� in the case
of a compact Riemannian� K�ahlerian� or algebraic manifold X � In the
noncompact case� Iitaka 
��� extended the Albanese map to quasipro�
jective varieties� The harmonic map theory has been extended to the
quasiprojective case by Jost�Yau 
��� 
���� and Jost�Zuo 
���� 
���� All
these papers� however� work in a situation where one can produce a
harmonic map of �nite energy� and this requires some additional as�
sumptions about the representations of ���X� near in�nity� Simpson

�� considered the case of complex dimension � and used harmonic
maps with controlled behavior at in�nity which he called �tame�� In
dimension �� however� many of the analytical di�culties that we have to
encounter in the present paper are not present� �For the one�dimensional
analysis� see also the papers 
��� and 
��� that will be discussed in more
details below��

The main technical achievement of the present paper is to remove
the restriction that the associated harmonic map must have �nite en�
ergy� while working in arbitrary dimension� In our Theorem ���� we show
that for any reductive representation � of �� of a smooth quasiprojective
variety �or� more generally� for a K�ahler manifold admitting a suitable
compacti�cation� into the isometry group of either a symmetric space
of noncompact type or a locally compact Euclidean Tits building� we
obtain a corresponding harmonic map u of possibly in�nite energy that
satis�es a precise growth estimate near in�nity� �Here� a symmetric
space is associated with a representation in a linear algebraic group de�
�ned over R or C � whereas the Tits buildings arise from representations
over p�adic ground �elds�� In fact� the map is even pluriharmonic� mak�
ing the foliation technique �rst discovered in 
��� applicable� ��Pluri�
harmonic� means that the restriction of u to any subvariety of X is
again harmonic��

The prototype of such an in�nite energy harmonic map with the
typical growth behavior near the puncture is the map

u� � D
� �� fz � C �  � jzj � �g � S�

rei� �� ��
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For the case of complex dimension �� i�e�� for holomorphic curves with
cusps alias punctured Riemann surfaces� such a harmonic map was con�
structed by Wolf 
��� and Lohkamp 
���� controlling the growth of the
energy density near the puncture through comparison with the proto�
type u�� The same strategy also works in our situation� but the details
become much harder�

It is conceivable that our existence result holds in more generality�
Namely� one would like the target to be a more general space of non�
positive curvature� In our argument� besides the nonpositivity of the
curvature� however� we need a decay condition for Jacobi �elds in order
to handle parabolic or quasihyperbolic elements in the image of �� �Wolf

��� and Lohkamp 
��� only consider the case of hyperbolic �or elliptic�
elements which su�ces for their purposes�� Finally one would like to
extend the result to nonlocally compact images� as in 
���� 
���� 
����

����

For our present purposes� however� our existence result su�ces� and
we can essentially complete the nonabelian Hodge theory for quasipro�
jective manifolds�

Some partial existence results for harmonic maps on noncompact
K�ahler manifolds have recently obtained by J� Li 
���� It is not clear�
however� whether the maps produced by his method can be shown to
be pluriharmonic�

In x�� we complete strong rigidity for nonuniform lattices in bounded
symmetric domains D in the holomorphic context� The result is that if
a quasiprojective manifold X is homotopically equivalent to a quotient
of an irreducible bounded symmetric domain by a lattice� then X is
already biholomorphically equivalent to this quotient �with the standard
exception where D is the hyperbolic plane�� This is the holomorphic
version of Margulis	 rigidity theorem� In the compact case� it was shown
by Siu 
���� and in the noncompact case by Jost�Yau 
��� 
��� with an
additional technical restriction on the compacti�cation of X �

Our second application� presented in x�� extends our previous work

���� 
���� �In a subsequent paper� Katzarkov 
��� stated results similar
to those of 
���� together with some applications to the Shafarevich
conjecture��

After recalling some preliminary constructions� we shall show two
main results� The �rst one concerns Zariski dense representations � of
���X� in a simple algebraic group G de�ned over C � with �xed char�
acteristic polynomials at in�nity� If such a representation is not rigid�
then it factors through a morphism f � X � X �� with dimX � � rkC G�
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In other words� any representation that does not factor through one
obeying this rank restriction is rigid� The second result concerns the
case where G is de�ned over a complete �eld K with a discrete val�
uation v� �We assume that the associated Tits building ��G�Kv�� is
locally compact�� If � is unbounded with respect to this valuation� i�e��
if �����X�� is not contained in a compact subgroup of G�Kv�� i�e�� in
the stabilizer of a vertex of ��G�Kv��� then � factors as before�

As explained in more detail in the introduction of 
���� these results
have far reaching consequences for archimedean and p�adic representa�
tions of fundamental groups of quasiprojective manifolds�

The paper partly grew out of a discussion with Peter Kronheimer�
and we thank him for his suggestions�

We thank the referee for �nding an error in the �rst version of our
paper� and we should point out that the �rst Lemma in our announce�
ment 
��� is incorrect in the generality stated�

Our work was supported by SFB ��� and the Leibniz program of the
DFG� The �rst author also thanks Harvard University and ETH Z�urich
for hospitality�

�� The existence of pluriharmonic maps with controlled

growth at in�nity

���� Statement of the result

Theorem ���� Let X be a K�ahler manifold admitting a compact�
i�cation �X as a compact K�ahler manifold for which D �� �X n X is a
divisor with simple normal crossings� Let Y be either

a� a symmetric space of noncompact type

or

b� a locally compact Euclidean Tits building �with isometry group
operating transitively on the set of vertices��

Let
� � ���X�� I�Y �

be a homomorphism from the fundamental group of X into the isometry
group of Y � Assume that � is reductive �see Def� below�� Then there
exists a ��equivariant pluriharmonic

u � �X � Y
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from the universal cover of X to Y satisfying the following estimate�
For every noncompact holomorphic curve � in X� we represent a

neighborhood of a node conformally as a punctured disc

D� �� fz � C �  � jzj � �g � C �

With respect to the �noncomplete� Euclidean metric on D� and the nat�
ural metric of Y � we then have for the norm of the derivative of u

kdu�z�k
 �
const

jzj

�

�The constant depends only on the representation �� but not on the
curve �� one may extract this from the subsequent proof� but we shall
not go into the details� Note that in case b�� u is only Lipschitz� the
preceding estimate then holds a�e�� and pluriharmonicity of u has to be
interpreted in the sense of Gromov�Schoen 
�����

The following de�nition was suggested by Scot Adams�

De�nition ���� Let Y be a complete� simply connected� locally
compact space of nonpositive curvature with isometry group I�Y �� Let
� be a group� and � � �� I�Y � a homomorphism�

� is called reductive if there exists a complete totally geodesic sub�
space Z of Y stabilized by ���� with the following property�

For every totally geodesic subspace Z� of Z that has no Euclidean
factor� ���� does not �x any point in the sphere at in�nity of Z�� i�e�� is
not contained in a parabolic subgroup of the isometry group of Z��

In geometric terms� this means that there does not exist an un�
bounded sequence �yn�n�N� Z � with

dist �yn� ��yn�� � c���

for all � � ����� with a constant c depending on �� but not on n� Note
that any semisimple representation is reductive�

For simplicity of notation� we shall consider u in the sequel as a map
from X into

N �� Y�� ��� �X�� �

although N may be singular� Sometimes� it will be implicitly under�
stood �and not explicitly mentioned� that for the proper meaning of a
statement about a harmonic map one has to lift the universal covers in
a ��equivariant manner�
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In particular� the energy of u can be computed on a fundamental
region FX for X in �X�

E�u� �
�

�

Z
FX

kdu�x�k
dvol�x��

Here� we assume that X is equipped with some K�ahler metric which
then lifts to �X and induces a volume form dvol�x�� and the norm of the
di erential du is computed with respect to this metric and the one on
Y �

���� Harmonic and pluriharmonic maps

In this section� we collect some known results about harmonic and pluri�
harmonic that will be employed in the proof of Theorem ����

�H�� LetM be a compact Riemannian manifold� possibly with nonempty
boundary� and Y be either

a� a complete simply connected Riemannian manifold of non�
positive curvature

or

b� a locally compact Euclidean Tits buildings� with isometry
group I�Y ��

Let

� � ���M�� I�Y �

be a reductive representation� In case �M � �� let g be smooth
��equivariant boundary values� Then there exists a ��equivariant
harmonic map

u � �M � Y�

with uj� �M � g in case �M �� �� This was shown in 
��� and

�� for a� building upon 
��� 
��� 
��� 
��� 
��� 
��� and for b� in

���� Conversely� if such a ��equivariant harmonic map exists�
then � is reductive� see 
��� Moreover� u minimizes energy in its
class� In fact� instead of the compactness ofM � one only needs to
assume that there exists some �nite energy map in the class under
consideration�
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�H�� If under the assumptions of �H��� u� and u
 are ��equivariant
harmonic maps� then there exists a family ut � �X � Y of ��
equivariant harmonic maps� � � t � �� all of the same energy� and
for each x � X �

ut�x� � � � t � ��

is a geodesic arc from u��x� to u
�x� parametrized proportionally
to arclength� with length independent of x� This was shown in 
���

��� 
���� 
����

�H�� Let u be a harmonic map as in �H��� Then u is smooth in case a�
and Lipschitz in case b� as shown in 
���� Furthermore� it is shown
in 
��� that u has su�cient regularity properties to justify the ap�
plication of Bochner type identities that were previously developed
for the smooth case� see �H��� Also� on regions of controlled ge�
ometry� a harmonic map satis�es estimates depending only on its
energy� See e�g� 
��� and the references contained therein�

�H�� Suppose that M is a compact K�ahler manifold and that Y is a
symmetric space of noncompact type� Let u be a harmonic map as
in �H��� It was shown� by Siu 
��� in the Hermitian symmetric case
and by Sampson 
��� in general� that u is pluriharmonic meaning
that its restriction to any complex submanifold of M is again
harmonic� Since harmonicity of a map on a holomorphic curve �
is a property that does not depend on the choice of a �conformal�
metric on �� also pluriharmonicity of u is a property that does not
depend on the K�ahler metric� but only on the complex structure of
M � As noted in �H��� this result was extended by Gromov�Schoen
to Euclidean Tits buildings Y � Likewise� the pluriharmonicity was
extended to the �nite energy case by Jost�Yau 
��� 
����

���� Preliminary constructions

Let �X be a compacti�cation for which D � �XnX is a divisor with simple
normal crossings as only possible singularities� We may also assume that
each irreducible componentD� ofD is free from self intersections� Thus�
at each intersection point� precisely two components of D meet� The
irreducible components of D will be denoted by D�� � � � � Dl�

For each irreducible component D� of D� we let 	� be a holomorphic
section of O� �X� 
D��� with a simple zero along D�� By multiplying 	�
with a suitable constant� if necessary� we may assume that the deriva�
tive of 	� has no zeroes in the set j	�j � �� We obtain a �bration of a
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neighborhood of D� in �X by holomorphic disks B � fz � C � jzj � �g
meeting D� transversally at  � B by choosing local trivializations of
the line bundle 
D��� and on each such disk� 	� de�nes a local coordi�
nate through the trivialization� Since in general� the normal bundle of
D� is nontrivial� these local coordinates are not globally de�ned� but
coordinate changes preserve these local disks� Thus� for each w � D��
we obtain such a transversal disk Bw � The �brations corresponding to
two di erent components of D meet transversally near the intersection
locus of these components�

Likewise� for su�ciently small 
 � � j	�j � 
 de�nes the boundary
��
� of such a tube around D�� �bered by circles� The intersection of two

such boundaries ���
� � ���

� is �bered by tori�

���� Hyperbolic and elliptic representations

Let Y be a simply connected complete metric space with distance func�
tion d��� �� of nonpositive curvature in the sense of Alexandrov� with
isometry group I�Y �� We recall the following�

De�nition ���� g � I�Y � is called

� elliptic if infy�Y d�y� gy� �  and there exists y� � Y with gy� �
y��

� hyperbolic if infy�Y d�y� gy� �� �g �  and there exists y� � Y

with d�y�� gy�� � �g�

� parabolic if infy�Y d�y� gy� � � but the in�mum is not achieved�

� quasihyperbolic if infy�Y d�y� gy� �  and the in�mum is not
achieved�

Throughout this section� we assume�

�A� The representation
� � ���X�� I�Y �

has the property that the image of every small loop around D is
hyperbolic or elliptic�

Actually� the case of elliptic elements can be handled by the analysis
of our previous papers 
���� 
���� because it does not cause in�nite en�
ergy� Elliptic elements� however� also easily succumb to the treatment
of hyperbolic elements that we are going to present�
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Each hyperbolic element in I�Y � can by represented by translation
along some geodesic� In the quotient N � Y�����X��� this yields
a closed geodesic c� Since each elliptic element has a �xed point� it
corresponds to a point curve� i�e�� a trivial closed geodesic in N �

We then map each circle in ��
� onto the corresponding closed geodesic

proportionally to arclength� This may be done smoothly on the family of
circles de�ning ��

� � On intersections ���
� � ���

� � this may be performed
in a compatible� i�e�� continuous manner because the two elements of
����X�� corresponding to the circles in ���

� and ���
� commute� since

the two circles themselves commute as elements of ���X� near an inter�
section of D�� and D�� �

As explained above� we consider ��
� as the boundary of a family of

disks� S�
� �

S
w�D�

Bw��� all holomorphically identi�ed with
fz � C � jzj � 
g� with z �  corresponding to w � D�� Likewise�
the boundary �Bw�� is identi�ed with the aforementioned circle in ��

� �
We also identify X � Bw�� �� B

�
w�� with B�

� �� fz � C �  � jzj � 
g� or

with the semi�in�nite cylinder A� �� 
log 
�	�
 S��

The above map from ��
� to N induces a map from �A� � fg 
 S�

to N � mapping �A� proportionally to arclength onto a closed geodesic
� in N � We denote this map by �g���� �� � S��� We extend �g� to all of
A� by putting

g��s� �� � �g�����

Obviously� this de�nes a harmonic map from A� onto the closed geodesic
in N �

Performing this construction on all punctured disks B�
w��� we obtain

a map v� from S�
� to N that is harmonic on each such punctured disk�

Again� the construction is continuous in the intersection of two such sets
S��
� � S��

� �

We shall perform a higherdimensional analogue of the construction
of Wolf 
��� and Lohkamp 
���� The essential point will be that v�
is absolutely energy minimizing in its homotopy class on annulus type
compact subsets of each disk B�

w���

We recall the Poincar!e metric on the punctured disk

�
i

�

�


�z��z
log log

�

jzj

dz � d�z �

i

�

�

jzj
 �log jzj
�

dz � d�z�
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We put 	 ��
Ql

��� 	�� choose M � supX j	j� and may then construct a
Poincar!e type K�ahler metric on X via

i

�
����dz

� � dz
�� � �

i

�

�


�z� � �z ��
log log

M


j	j

dz� � dz

�� " c����dz
� � dz

��

where ����dz
� � dz

�� is some K�ahler metric on �X� and c is chosen so
large that the above expression becomes positive de�nite� The resulting
metric on X then is complete and of �nite volume� see 
��� Also� when
restricted to our above local disks near D� it behaves like the Poincar!e
metric�

We let
� �� det

�
����
�
�

We put
v� �� v�jS�

�
�

and consider the harmonic map

u� � X n S�
� � N

with boundary values
u�j��

�

� v�j��
�

and� of course� inducing the homomorphism  � ���X� � I�Y �� The
existence of u� was shown by Schoen 
���� We shall show that the maps
u� are equicontinuous on compact subsets of X as 
 �  and induce
a harmonic map u � X � N in the limit� In general� u will have
in�nite energy� but the blow�up of the energy density of u near D will
be controlled su�ciently well in order to deduce that u is pluriharmonic�

We extend v� smoothly from S�
� to all of X as a map to N in the

required homotopy class� and denote this extension by

v � X � N�

We also put
A�� �� 
� log 
�
 S��

Thus
A� � A� A

�
��

Finally

S��
�
�� S�

� n S
�
� � S��� �� X n

l�
���

S�
� � S�� ��

l�
���

S��
�
�
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Let w � D� be a regular point ofD� Near w� we choose coordinates on �X
such that z� parametrizes Bw��� and z


 parametrizesD�� If dimC X � ��
z
 will have more than one component� but this will not a ect our sub�
sequent reasoning� In the sequel� the index � will always stand for all
those z
�directions together� In our local coodinates� w will be repre�
sented as  � �� �� While the component ���� of the K�ahler metric
becomes singular at w� �
�
 extends smoothly to a neighborhood of w in
D�� We write in our coordinates

�
�
�z
�� z
� � �
�
�� z


� "O�
��z����

�see e�g� 
��� for the extension property of �
�
��
For the subsequent estimates� we assume that D has only one con�

nected component� because the case of several components is handled by
the same type of reasoning� but requires a more complicated notation�

The energy of u� is

E�u��

�

Z
S��
�

��
���z�� z
�

�u�
�z�

�u�
��z�

��z�� z
�dz� � d�z� � dz
 � d�z


"

Z
S��
�

X
������������

��
���z�� z
�

�u�
�z�

�u�
��z�

��z�� z
�dz� � d�z� � dz
 � d�z
�

Since at each point� the metric tensor can be diagonalized through a
choice of holomorphic local coodinates whose �rst component is tan�
gential to Bw��� we conclude that

E�u�� �

Z
S��
�

��
���z�� z
�

�u�
�z�

�u�
��z�

��z�� z
�dz� � d�z� � dz
 � d�z


�

Z
S��
�

�
�
�z
�� z
�

�u�
�z�

�u�
��z�

dz� � d�z� � dz
 � d�z


�

Z
S�
�

�
�
�� z

�
�u�
�z�

�u�
��z�

dz� � d�z� � dz
 � d�z


"

Z
S�
�

O�
��z�����u�

�z�
�u�
��z�

dz� � d�z� � dz
 � d�z
�

Let l � l�c� be the length of the image geodesic c� ThenZ
A�
�

�
�
�� z

�
�u�
�z�

�u�
��z�

dz� � d�z� � jlog 
j l
�
�
�� z

��
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On the other hand�

E
�
vjS��

�

�
� E

�
vjS�

�

�
"E

�
vjXnS�

�
� E

�
vjS�

�

�
" c�

for some constant c�

�

Z
jlog 
j l
�
�
�� z


�dz
 � d�z
 " c


for some constant c


using the same expansion as above and

E
�
vjA�

�

�
� jlog 
j l
�

Here� the constants c�� c
 are independent of 
� and so will be all sub�
sequent ones� Since u� as a harmonic map is energy minimizing among
all maps on S��� with the same boundary values� we get

E�u�� � E
�
vjS��

�

�
�

ThereforeZ
S��
�

X
������������

��
���z�� z
�

�u�
�z�

�u�
�z�

��z�� z
�dz� � d�z� � dz
 � d�z
 � c��

where c� again is independent of 
�
If 
 � � � �� we may also write

E
�
vjS��

�

�
� E

�
vjS���

�
" E

�
vjS�

�
nS��

�
�

Since the energy of u� on S�� n S
�
� again is bounded from below by the

corresponding one of v up to some additive constant c�� from the energy
minimizing property of u� we obtain

E
�
u�jS���

�
� E

�
v�jS���

�
" c�

with c independent of 
 �but not of ���
Thus� the energy of u� on S��� for �xed � � 
 is bounded indepen�

dently of 
� Therefore� as 
 � � some subsequence of u� converges
on S ��� to a harmonic map� using standard estimates for harmonic maps
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�see 
����� By a diagonal sequence construction� we then get a harmonic
map

u � X � N�

Here� the reductivity assumption prevents the limit u from disappearing
at in�nity� Furthermore� if we replace the coordinate z� by the coor�
dinate �s� �� on the cylinder A�� we get a coordinate system in which
all �rst derivatives of u are uniformly bounded� This results from the
facts that the contribution of the energy of u� in the z
�direction is
bounded independently of u� and that the energy of u� on A�� behaves
like jlog �j l
� Consequently� in our original �z�� z
� coordinates����� �u�z� �z�� z
�

���� �
c�
jz�j

����� �u�z
 �z�� z
�
���� � c�

for constants c�� c��
Similar constructions apply near singularities of D� i�e�� where two

components of D meet� Here� we may use 	 as our �rst coordinate and
then obtain a cylindrical coordinate system by replacing 	 by log 	� We
conclude that in the 	�direction� the derivative of u behaves like �

j	j �

whereas in directions normal to 	� it is bounded� �By construction� this
is the behaviour of v� and we compare u� and v as before up to some
bounded terms��

Lemma ���� u is pluriharmonic�

Proof� By Siu	s formula 
���� using local coordinates on N and de�
noting the corresponding metric tensor by �gij�� we obtain

� ��
�
gij ��u

i � �uj
�
� �m�
 � f�m

�� �K�ahler form of some K�ahler metric on X � m � dimC X�� for some
nonnegative� function f � provided Y has nonpositive curvature opera�
tor� a condition satis�ed in our applications� If Y is a Euclidean Tits
building� the preceding formula holds in a weak sense� but the compu�
tations can be justi�ed by the analysis of Gromov�Schoen 
���� If f � �
then u is pluriharmonic�

On a compact manifold� the left hand side of Siu	s formula integrates
to � and one readily concludes f � � In the present noncompact case�

�The signs in ��� are not quite correct� but this will be irrelevant for the structure
of the argument
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we shall verify this with the help of a cut�o argument� For simplicity
of notation� we shall only consider the case m � �� and the higher
dimensional case is completely analogous�

If � is a cut�o function that vanishes near D� we haveZ
X

�� ��
�
gij ��u

i � �uj
�
�

Z
X

� ��� � gij ��u
i � �uj �

For  � � � �� we choose the cut�o function

�
�z� ��

������	
�
�� logj	�z�j�

log 
�

�

for � � j	�z�j � ��

 for j	�z�j � ��

� for j	�z�j � ��

�
�z� is of class C��� near j	�z�j � �� It is not of class C��� at j	�z�j � ��
but the derivative of �
 near j	�z�j � � tends to  as � tends to � and
therefore� this defect can be remedied by a straightforward interpolation
that is left out�

We compute

�

�z�
�
 � ��



��

log j	�z�j


log �


�

�

log �

	z�

	

�


�z���z�
�
 �

�

�log �
�

	z� �	z ��

j	j

�

We then haveZ
� ���
 � gij ��u

i � �uj

� c�

Z j	�z�j��

j	�z�j�


�

�log �
�

�

j	j


�since the derivative of u is bounded in the directions normal to 	�

� c�

Z �




�

�log �
�

�

r

rdr

�using polar coordinates 	 � rei��

�
�c� log �

��log ��

�

and this tends to  as �� �
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Therefore�Z
X

� ��
�
gij ��u

i � �uj
�
� lim


��

Z
X

� ���
 � gij ��u
i � �uj � �

Thus� in Siu	s formula� f � � and u is pluriharmonic as desired� q�e�d�

Remark� Instead of Siu	s Bochner identity� we might as well employ
one of the other Bochner type identities that have been shown to apply
in the present situation� see e�g� 
��� or 
����

Theorem � for the case of a Euclidean Tits building now follows from

Lemma ���� Let Y be a locally compact Euclidean Tits building�
with isometry group operating transitively on the vertices� Then every
isometry of Y is elliptic or hyperbolic�

Proof� Let � � I�Y �� and let �yn�n�N� Y be a sequence with

lim
n��

d�yn� �yn� � inf
y�Y

d�y� �y��

If �yn� is bounded� a subsequence converges� and the in�mum is realized
so that � is elliptic or hyperbolic� If �yn� is unbounded� we perform the
following construction� We choose p� � Y and let cn�t� be the geodesic
from p� to yn� parametrized by arclength t � � c�n�t� �� �cn�t� then is
the geodesic from �p� to �yn� Since �yn� is unbounded� after selection
of a subsequence� we obtain geodesic rays c�t� and c��t� � �c�t�� These
two rays stay within bounded distance of each other� Therefore� they
are asymptotically contained in a #at F � Thus� they are geodesic rays in
the Euclidean space F � and they then have to be parallel� In particular�
we may choose p� so that

d�p�� �p�� � d�yn� �yn�

for all n� and p� realizes the in�mum� Thus� � has to be hyperbolic�
q�e�d�

���� Arbitrary representations

In this section� we make the following assumption�

�B� Let c��t�� c
�t� be geodesic rays in Y parametrized by arclength
t � R� with

lim
t��

d�c��t�� c
�t�� � ��

Then there exist constants � �  and � with



��� j�urgen jost � kang zuo

d�c��t�� c
�t�� � �" �e��t for all t � ������

Assumption �B� is satis�ed if Y is a symmetric space of noncompact
type� Therefore� the considerations of the present section will prove
Theorem ��� in that case�

Actually� under the assumption �B�� the case of parabolic elements
can be handled by the analysis of our previous paper 
��� because it
does not cause in�nite energy� Parabolic elements� however� also easily
succumb to the treatment of quasihyperbolic elements that we are going
to present� �Namely� our reasoning will not need that the constant �g
introduced below is positive��

We wish to proceed as in the preceding section� but we need to
construct the comparison map vr � �r � N somewhat di erently� In
the notation of the preceding section� we let fg 
 S� � A� correspond
to g � ���X�� and choose a sequence �yn�n�N� Y with

lim
n��

d�yn� ��g�yn� � inf
y�Y

d�y� ��g�y� �� �g�

We also choose y� � Y � If ��g� is not elliptic or hyperbolic� �yn�n�N
diverges� and after selection of a subsequence� the geodesic arcs from y�
to yn converge to a geodesic ray c��t�� t being the arclength parameter�
The geodesic arcs from ��g�y� to ��g�yn converge to the geodesic ray
c��t� �� ��g�c��t�� We let �t�s� be the geodesic arc from c��t� to c
�t�
with parameter s � 
� ��� proportional to arclength �the proportion�
ality factor depends on t�� Using polar coordinates on our local disks
transversal to D� on

f��� �� �  � � � r�  � � � ��g �

we put

vr��� �� �� �� log�������������

where passing to the quotient N is implicitly understood� and � �  is
chosen in such a way that �� � � with � as in �B�� We have�����vr��

���� � c
�

�" �
for some constant c������

and �����vr��

���� � �

��

�
�g " �e��� log 

�
�

�

��


�g " �

�

���

�
������
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because of assumption �B�� Since �� � � by choice of ��

E�vr� �
�

�
r�
g " �������

for some constant ��� and we may then proceed as in the previous section
to conclude the proof� q�e�d�

���� Harmonic bundles

In order to formulate a corollary� we need to recall some constructions
of Hitchin 
���� Corlette 
��� and Simpson 
���� Let V be a Gl�n� C�
bundle with a #at connection D� Introducing a metric g leads to the
decomposition

D � Dg " ��

where Dg preserves the metric� Let � � ���X�� Gl�n� C� be the repre�
sentation de�ned by the #at bundle V � A metric on V can be considered
as a ��equivariant map

h � �X � Gl�n� C ��U�n��

We have dh � �� and h is harmonic i 

D�
g� � �

In this case� one says that the metric is harmonic� We then decompose
into types�

Dg � D� "D���

� � ���� " �����

We have �D���
 � � and
E ��

�
V�D��

�
then is a holomorphic bundle� �The complex structure on E is di erent
from the complex structure on V induced by the #at connection D�
unless h is constant� i�e�� � is a U�n� representation�� Thus

�
E� ����

�
is

a Higgs bundle� A Higgs bundle on X consists of a holomorphic bundle
E together with

���� � E � $����X�� E

satisfying the integrability condition

���� � ���� � �



��� j�urgen jost � kang zuo

�It was shown by Sampson 
��� that the harmonicity of h implies this
integrability condition�� Let

�
E� ����

�
be a Higgs bundle on X � The

analogue of the ���operator on E now is

D
 � �� " �����

A metric on E then de�nes

D� � � " ����

with �
����e� f

�
�
�
e� ����f

�
for all e� f�

The metric again is preserved by

Dg � � " �� �

and the metric is harmonic i D is #at� These two conditions are inverses
of each other�

Corollary ����

�i� Let �V�D� be a �at bundle on X de�ned by a reductive represen�
tation �� Let u of Theorem 	�	 de�ne the corresponding harmonic
metric g� and write

D � Dg " du � � " �� " ���� " ����

as above� Then the curvature of the metric connection Dg � �" ��
is bounded by a Poincar
e type K�ahler metric� �In particular� the
curvature is in L���

�ii� Let �E� ����� be a Higgs bundle on X with u of Theorem 	�	 de�n�
ing a harmonic metric as before� Then the metric connection as�
sociated to the holomorphic structure ��"����� namely �"��"����"
����� has curvature again bounded by a Poincar
e type K�ahler met�
ric�

Proof� If we restrict everything to a curve transversal to D in the
direction de�ned by 	� from the proof of Theorem ���� we have the
estimate

kdu�z�k
 �
const

jzj

�using z � 	 as a coordinate on the curve�
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on that curve� while kduk is locally bounded in the other directions� The
argument of Simpson �see 
�� Section �� main estimate� Thm� ��� then
implies that the curvatures R of the connections under consideration
locally satisfy an estimate

kRk �
const

jzj
 �log jzj�

�

q�e�d�

�� Strong rigidity of lattices in Hermitian

symmetric spaces

Theorem ���� Let Y be an irreducible Hermitian symmetric space
of noncompact type other than the hyperbolic plane� Let � be a lattice in
Y � i�e�� a discrete subgroup of I�Y � with a quotient �nY of �nite volume�
Let X be a smooth quasiprojective variety �or� more generally� a K�ahler
manifold X that can be compacti�ed as a K�ahler manifold �X such that
�X nX is a divisor with at most simple normal crossings as singularities
� note that in the quasiprojective case such a compacti�cation always
exists by Hironaka�s theorem� with contractible universal cover of dimen�
sion �larger or� equal to the dimension of Y and with ���X� isomorphic
to �� Then the universal cover �X of X is �biholomorphically
 equiva�
lent to Y � and ���X� is conjugate to � as a group of automorphisms of
Y �

Remark� We have formulated Theorem ��� here for lattices with�
out �xed points only� It is known� however� that the general case can
easily be reduced to that case by taking suitable �nite covers� There�
fore Theorem ��� continues to hold if X is a �nite quotient of a smooth
quasiprojective variety�

In the case where X is also locally Hermitian symmetric� the result
is due to Mostow 
��� �X compact�� Prasad 
��� �Y of rank �� and
Margulis 
���� If X is compact� the result was proved by Siu 
��� with
harmonic map techniques� In the general case� the result was shown by
Jost�Yau 
��� under an additional technical assumption on the projective
compacti�cation �X of X �

Before giving the actual proof of Theorem ���� we should describe
the essential di�culty encountered in it� This di�culty stems from the

�this means biholomorphically or antibiholomorphically
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fact that while X and �nY are assumed to be homotopically equivalent�
the compacti�cations of these spaces may a priori be quite di erent� Let
us consider the simple example N �� S� 
 S� 
 
� ��� This space may
be considered as either

N� �� S� 
 fz�C �  � jzj � �g or N
 �� fz�C �  � jzj � �g 
 S��

and thus it may be compacti�ed by adding either the �rst or the sec�
ond S� factor times fg� If we equip fz�C �  � jzj � �g with its
complete hyperbolic metric� and N� and N
 with the resulting prod�
uct metrics� N� and N
 become complete Riemannian manifolds with
boundary S� 
 S�� The identity of N obviously induces a proper ho�
motopy equivalence between N� and N
� In N�� the �rst S� factor
corresponds to a hyperbolic element of the fundamental group� and the
second S� factor to a parabolic one� while for N
 these roles are ex�
changed� Consequently� the harmonic map between N� and N
 which
is homotopic to the identity produced by our method will have in�nite
energy because a parabolic element is mapped to a hyperbolic one�

Since� as mentioned� in the situation of Theorem ���� at the begin�
ning we cannot identify the two compacti�cations of X and �nY � we
have to deal with such maps of in�nite energy although in the end one
of the conclusions of the proof has to be that the harmonic map under
consideration after all does have �nite energy� and the two spaces do
possess isomorphic compacti�cations�

If Y has rank �� then �nY may be compacti�ed by adding �nitely
many cusp points� Consequently� all elements of the fundamental group�
i�e�� of �� that can be deformed to in�nity are parabolic� Therefore� in
particular� the images of all parabolic elements of ���X� are parabolic
again� and one may construct a harmonic map of �nite energy� This
is the case treated in 
��� Thus� in the sequel� we may assume that
Y has rank at least �� and by the theorem of Margulis �see 
����� � is
arithmetic� This fact then gives additional information about possible
compacti�cations of �nY �

In 
���� the situation was considered where one can produce a �nite
energy harmonic map in spite of the possibility that a parabolic element
may be mapped to a hyperbolic or quasihyperbolic one� Namely even
if that occurs and the energy density of any homotopy equivalence then
has to blow up towards in�nity� this might still be compensated by a
su�ciently fast decay of the volume form of the domain near in�nity so
that the overall energy of some suitable map might still turn out to be
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�nite� This requires an additional assumption on the compacti�cation
of X � Here� we do not wish to make such an assumption�

The reason for wanting to have a �nite energy harmonic map was
to make sure that the Bochner type identity of Siu is satis�ed� In x��
however� we have produced a map of possibly in�nite energy that still
satis�es this Bochner identity� For this reason� the proof of Theorem ���
may proceed essentially as in 
���� and we may therefore be somewhat
brief in certain places�

After this discussion� let us now start with the

Proof of Theorem �	� Since ���X� is isomorphic to the lattice ��
we obtain a reductive homomorphism

� � ���X�� I�Y � with � ��� �X�� � ��

Theorem ��� yields a ��equivariant pluriharmonic map

u � �X � Y�

u can be considered as a pluriharmonic map

u � X � � n Y�

Moreover� in the course of proof of Theorem ��� we have shown that
u satis�es Siu	s Bochner identity� By our topological assumptions� u is
a homotopy equivalence�

The work of Borel�Serre 
�� implies that the � n Y has nontrivial co�
homology of degree � dimC Y� Q�rank���� which is at least � dimC Y �
rank�Y �� Therefore� the maximal rank of the di erential du of u is at
least this number� This is large enough for Siu	s analysis 
��� to apply�
Thus we may conclude that u is �holomorphic�

We equip X with a Poincar!e type metric as in x���� By a result of
Cornalba�Gri�ths 
��� such a metric has Ricci curvature bounded from
below� and therefore Royden	s version 
��� of Yau	s Schwarz Lemma 
���
may be applied to u as u is �holomorphic�

This Schwarz lemma says that

kdu�z�k
 �
k�
k

�

where k� is a lower bound for the Ricci curvature of X � and k
 is an
upper bound for the holomorphic sectional curvature of Y � With the
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standard normalizations� we have in fact k
 � ��� In particular� u
has bounded energy density� and since the Poincar!e type metric on
X has �nite volume �see 
��� or also 
����� u has �nite energy after
all� Therefore� the rest of the proof may proceed essentially as in 
����
Nevertheless� we shall describe the key steps now�

The �rst step is the properness of u� The details of this step are
provided in 
��� x�d�� The essential idea is the following� Let us consider
a loop around a component of �X nX that is contractible in �X but not in
X �at least not in a neighborhood of �X nX�� We call such a loop short�
because it is homotopic to loops of arbitrarily small length in X � The
Schwarz lemma implies that its image under u is likewise short in this
sense� i�e�� it corresponds to a parabolic element of �� Consequently� if
we take a sequence of such loops in a given homotopy class in X that
contract to a point on �X nX � the images of these loops have to go to
in�nity in � n Y � From this observation� properness is deduced�

�In passing� we observe that it follows from Remmert	s proper map�
ping theorem that the image of X under the proper �holomophic map
u now can be seen to be an analytic subvariety of � n Y��

Also� one shows as in 
��� x�d� that u extends as a continuous map
from �X to the Baily�Borel compacti�cation of � nY� essentially because
the latter is the minimal compacti�cation� Therefore� u has a well
de�ned degree�

As u is a proper �holomorphic map� the preimage of a point in
� n Y has to be zerodimensional� as otherwise it would be a compact
subvariety� hence represent a nontrivial homology class in X � As u is a
homotopy equivalence� such a class cannot be contracted to a point�

Consequently� u has nonzero degree� It remains to show that the
absolute value of the degree is �� For that purpose� one proceeds as in

��� x�e� and considers a proper homotopy equivalence g � � n Y � X
such that u � g is homotopic to the identity of � n Y �

As above� we may deform u�g into a harmonic homotopy equivalence
h which then again turns out to be proper and �holomorphic�

The Schwarz lemma implies

jdeghj � ��

either directly by observing that the constants in the Schwarz lemma of
Yau�Royden are sharp� or by considering the iterates hn which would
violate the inequality of the Schwarz lemma for su�ciently large n if
jdeghj were larger than ��
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Since degh � degu � degg� we also have

jdeguj � ��

Altogether� jdeguj � ��

Finally� as in 
��� and 
��� x�e� one veri�es that u is �biholomorphic�
Namely� let V be the set of points where the Jacobian of u vanishes�
If V were not empty� it would be a complex subvariety of complex
codimension � whereas u�V � would have codimension at least � as u is
of degree ���

Thus� the preimage of a generic point in u�V � would be a nontrivial
analytic subvariety� and compact as u is proper�

Again� this is not compatible with u being a homotopy equivalence�
We conclude that V is empty� Thus� u is �biholomorphic� q�e�d�

Remark� The proceeding proof made heavy use of the fact that � is
known to be arithmetic by the work of Margulis� Ideally� the harmonic
map approach should not use this result� but rather deduce it as a
corollary� We thus obtain a generalization of the superrigidity theorem
of Margulis� but not a new proof of the original version� In this sense�
the harmonic map approach to superrigidity in the noncompact case is
still not completely satisfactory�

�� Some applications to representations of �� of algebraic
varieties

���� Holomorphic ��forms and spectral coverings

We now study the holomorphic ��forms arising from the harmonic map
u � �X � �� Let �Xr be the set of regular points of u� A point x� � �X is
called a regular point of u if there exist a ball B�x�� 
�� of radius 
� � 
and a rkKp G�#at F � ��G� with B�x�� 	�� � F �see 
��� p������ And

S�u� �� �X n �Xr is called the singular set of u� Let A �� Rr�be an
apartment of � and W � Zr 
 �W be the a�ne Weyl group of 
�G��
Here� �W is the usual Weyl group of G�Kp� which operates on A as a
�nite linear subgroup generated by re#ections� and Zr acts on A as the
usual translations�

The main point in this section is to construct the spectral covering of
u� The spectral covering for the Higgs bundle case has been intensively
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studied by R� Donagi 
�� and C� Simpson 
���� For the case where u is
a harmonic map into a building we have a similar construction� The
basic idea is to construct the coe�cients of the characteristic polynomial
directly from the di erential of u�

Let R � f��� � � � � �lg be the root system of �W � where �i are nor�
malized vectors in Rr and �� are the re#ection hyperplanes� We can
consider �i as coordinate functions on A by orthogonal projection from
A to �i� By taking the di erential� we obtain a collection of di erential
��forms fd��� � � � � d�lgA on A� It has the property that on the com�
mon part of any two apartments A and A� these collections of ��forms
fd��� � � � � d�lgA and fd��� � � � � d�lgA� coincide as sets� and the indices
of the ��forms in these two collections di er by a permutation from
�W � Here� a di erential form on � means that its restriction to each
apartment is a usual di erential form�

Let s�� � � � � sl be the basic symmetric polynomials of l variables�
We set 	� � s����� � � � � d�l� � � � � �	l � sl���� � � � � d�l�� Since they
are invariant under the �W �action� they piece together into di erential
forms 	�� � � � � 	l on � in the symmetric tensor product� It is clear that
fd��� � � � � d�lg are roots of the polynomial t

l " 	�t
l�� " � � �" 	l�

We then take the complexi�ed pull back u�c�	��� � � � � u
�c�	l� via the

di erential du� Their ��� ��parts are holomorphic forms on �X in the
symmetric tensor product which are called again 	�� � � � � 	l� This can
be seen as follows� Clearly� 	�� � � � � 	l are holomorphic on �Xr � �X n S�
Since u is Lipschitz� du is bounded near S and codimS � �� they
can be extended over S� Because u is equivariant� 	�� � � � � 	l is ���X��
invariant� they descend to some holomorphic forms on X that we call
again 	�� � � � � 	l� Because of the controlled growth at in�nity� 	�� � � � � 	r
have at most log poles along D��

Now the characteristic polynomial tl " 	�t
l�� " � � � " 	l de�nes a

subvariety Q in the total space T �X of the holomorphic cotangent bundle
of X �see 
��� for details�� It is called the spectral variety of u and
has the property that the restriction of the projection to Q induces a
rami�ed covering �maybe nonreduced� p � Q � X and the preimage
p���x� coincides with the roots of the polymonial tl " 	��x�t

l�� " � � �"
	l�x�� From this property we see that the embedding of Q � T �X de�nes
tautologically a holomorphic ��form �� on Q such that �� is a root of
the polymonial tl " p�	lt

l�� " � � �" p�	l�
Furthermore we take the Galois closure of the function �eld exten�

sion K�Q��K�X�� and obtain a Galois covering 	 � Xs � X and l

��forms ��� � � � � �l � ��Xs� 	�$�
X� having at most log�poles along D�
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such that they are the roots of the polynomial tl " 	�	lt
l�� " � � � "

	�	l� and the rami�cation divisor R � Xs of 	 is contained in the
union of the loci

S
�i ���j

��i � �j��� Vie the construction we see that
the pull back 	�u is the equivariant pluriharmonic map for 	�p� and
d��	�u���� � � � � d

��	�u��l glue together and yield ��� � � � � �l� The image
of the singular set u�S�u�� is contained in the closed faces of all rkKp G�
simplices of ��G�� By taking sequences along normal directions going
to faces and using the estimate ���� we obtain the following�

Lemma ����

	� There exists a �nite rami�ed Galois covering 	 � Xs � X so that
the di�erentials d��u	���� � � � � d��u	��l of the coordinate functions
on all apartments of ��G�Kp�� chosen as above piece together and
yield l holomorphic 	�forms ��� � � � � �l � ��Xs� 	�$�

X� having at
most log poles along D� and the rami�cation divisor R � Xs �S
�i ���j

��i � �j���

� The singular set 	�S�u� of the harmonic map 	�u is contained in
the union of the zero loci of some holomorphic 	�forms which are
linear combinations of ��� � � � � �l�

���� The quasi Albanese map� related 	brations and a Lefschetz�type

theorem

For a quasi projective smooth variety X � �X n D�� Iitaka 
��� has
de�ned the quasi Albanese map

� � X

R x
x�

�

���� Alb�X�

by taking integrals of holomorphic ��forms of X which have at most
log poles along D�� Alb�X� is a semi abelian variety which is a group
extension of C �d by Alb� �X�� The morphism � extends to a rational
map

�� � �X � Alb�X��

where Alb�X� is an algebraic P d��bre bundle over Alb� �X�� Using the
map ��� one obtains �as in 
���� 
���� and 
����

Lemma ��� �
��� Lemma ������ Given r 	�forms

�j � H�
�
�X�$�

�X �logD��j��
�
�
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� � j � r� suppose that the pulled back forms satisfy diBj
�j �  along

an e�ective divisor iBj
� Bj �� �X and Bj � D��j� � �� Then there

exists the following diagram

�Z �X

�W

�

g

�

�

where � is a surjective� generically �nite Galois map� g is a �bration

over �W with dim �W � r� and G����� �
�P

��j�r Bj

�
� � for generic

��

Given again r holomorphic ��forms �j on �X� which have at most
log poles at in�nity� we let �X � X be the universal covering of X � and
consider the integrals

�X

�R x
x�

������ �
R x
x�

�r

�
��h

��������������� C r �

Lemma ��� �
���� Section �� Theorem ����� If � � � k � r there is
no collection of k linearly independent 	�forms in the span of ��� � � � � �r
that factor through a surjective morphism g � X � W of dimW � k�
then h de�ned as above is surjective and all �bres of h are connected�

Lemma ���� Let f � X � Y be a surjective morphism with con�
nected �bres� and � � ���X�� G be a Zariski dense representation into
a simple algebraic group G� Suppose that f���y� is a smooth �bre� Then
either

a� the restriction �jf���y� is again Zariski dense� or

b� �jf���y� � f�g�

c� If jf���y� � f�g� then after passing to a blowingup and a �nite
etale covering e � X � � X� the pull back e� factors through the
Stein�factorization of fe�

Proof� The proof of a� and b� is very simple� just using the fact that
���f

���y�� is a normal subgroup in ���X�� We only need to show c��
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The main point in the proof is to use the fact that any �nitely
generated group of matrices is residually �nite� Recall that a group is
said to be residually �nite if the intersection of all subgroups of �nite
index consists of the identity element alone�

We adopt some arguments used in 
��� Section �� and 
��� Lemmata
� and ���� Let Y� � Y be the open subset over which f is regular� By
blowing up we may assume that Y nY� �

S
Bj is a divisor with normal

crossings only� On the regular part� the exact homotopy sequence

���F �� ���f
���Y���� ���Y��� �

implies that  factors through a representation � � ���Y��� GLr�

Claim ���� Let f��Bj� �
Pmj

i�� bijBij and �j be a short loop wich
goes around Bj � Then ���j� has �nite order� and the order nj satis�es
nj jbij� � � i � mj�

Proof� Let �j be a small disc transversal to Bj at the generic point�
and let �ij � f����j� be a small disc in a small neighborhood of the
generic point of Bij � f

����j�� Choose coordinates x on �ij and z on
�j such that f � �ij � �j is given by z � xbij � Take a short loop �ij

which lies in ��
ij and goes around Bij � Thus we have f���ij� � �

bij
j � and

���j�
bij � ��ij� � �� Hence Claim ��� is complete�

For a point z �
S
Bj � let Uz denote a small ball in Y centered in z�

and let %z denote the fundamental group of Uz n
S
Bj � It is known that

%z is a free abelian group generated freely by the short loops which go
around the components of

S
Bj passing through z�

Claim ����

	� There exists a subgroup � � ����Y�� of �nite index such that
� � ��%z� � � �z �

S
Bj�

� Let e � Y �
� � Y� be the �nite etale covering corresponding to the

�nite index subgroup ���� � ���Y��� Then there is a smooth com�
pletion Y � � Y �

� such that the extended map e � Y � � Y is a
branched covering with the branching order nj along Bj� and e��
can be extended across Y ��

Proof� �� Since
S
Bj has only �nitely many components� only �nitely

many images f%z � ���Y��� z �
S
Bjg can occur� Note that �%z

is �nite by Claim ���� Taking a decreasing sequence of �nite index
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subgroups f�ig of ����Y�� with
T
i �i � �� we �nd a �l such that

�l � �%z � � �z �
S
Bj �

�� Let e � Y �
� � Y� be the �nite etale covering corresponding to

����l� For each point z �
S
Bj � let B�� � � � � Bd be the components ofS

Bj which contain z� We may take a small neighborhood of z in the
form �d
�k�d and with coordinates z�� � � � � zd� zd��� � � � � zk� such that
zj �  de�nes Bj � � � j � d� The local covering

e � e�����d 
�k�d�� ��d 
�k�d

corresponds to the subgroup �����l� � %z � which is generated by the
loops �n�� � � � � � �ndd � Thus� the corresponding covering is given by

e � ��d 
�k�d � ��d 
�k�d

with

z� � xn�� � � � � � zd � xndd � zd�� � xd��� � � � � zk � xk �

The completion Y � is smooth� and the extended map e � Y � � Y has
the branching order nj along Bj via its construction�

Now ���Y
�� is the quotient of ���Y

�
�� divided by the short loops

around the components of the preimage e���
S
Bj�� Let �

�
j be a short

loop around a component of e���Bj�� Then e����j� � �
nj
j � This shows

that e�� factors through the quotient ���Y
��� We are done with Claim

����

Finally� we take the normalization of the �bre product

e � X � �� �X 
Y Y ��nor � X�

Since f��Bj� �
Pmj

i�� bijBij and the covering e � Y � � Y has the branch�
ing order nj along Bj with nj jbij � � � i � mj by Claim ���� it follows
that e � X � � X is etale� Let f � be the Stein�factorization of fe� Then
it is clear that f ��e�� � e�� c� is proved� q�e�d�

The following lemma is well known�

Lemma ��� 
���� Suppose that K is a complete �eld with respect
to a discrete valuation and F is a �at of positive dimension in the Tits
building ��G�K��� Then the isotropy group IF � G�K� of F is not
Zariski dense�
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���� Factorization theorems for nonrigid and unbounded represen�

tations

Theorem ���� Let G be a simple algebraic group over C � If � �
���� �t� is a Zariski dense representation� and � is nonrigid in ���� � then
� factors through a morphism f � X � Y with dim Y � rkC G�

Remark� The Zariski density of � is not a serious restriction� In
general we consider a semisimple representation �� and take its Zariski
closure in G� It is a direct product of almost simple algebraic groups�

Theorem ���� Let G be a simple algebraic group over a complete
�eld K with a discrete valuation� Suppose that ��G�K�� is locally com�
pact� If � is a Zariski dense representation� unbounded with respect to
this valuation� then � factors through a morphism f � X � Y with
dim Y � rkK�G��

Remark� Without the local compactness of ��G�K��� but assum�
ing that � is stabilizing at in�nity� Theorem ��� is Theorem � of 
����
For G � SLr���C �� there are two proofs for Theorem ���� The �rst
proof uses Higgs bundles as dicussed below� and the second one reduces
it to Theorem � in 
��� for SLr�� over a function �eld� This latter proof
works for an arbitrary simple group�

Proof of Theorem ��� Let ��� � � � � �r� r � rkK G� be a base of
the holomorphic ��forms from the harmonic map in section ���� Using
Lemma ��� and Lemma ���� we obtain the following property �see 
����
Claim �����

There are two possibilities� either

�� There is a decomposition of the span h��� � � � � �ri � U��U
 with
dimU
 � � and a subvariety V � Xs of dim V � dimXs�dimU�

such that the holomorphic map

�V

R
U���h

������ C dimU�

is surjective and with connected �bres and ��jV is Zariski dense�

or

�� ��� � � � � �r all factor through a morphism g � Xs � W with
dimW � r and g has connected �bres�

Case �� in fact cannot happen �see ����� This can be seen as follows�
The map Re h

�V
h
�� C dim U�

Re
�� RdimU�



��� j�urgen jost � kang zuo

is surjective and has connected �bres� Since the image of the singular
part h�S�u��� of u� � �V � ��G� is an analytic subvariety of C dim U� of
codimension at least � and any �bre of Re � C dimU� � RdimU� is a real
vector space RdimU� in C dim U� after a translation on Cdim U� � the �bres
of Re can not be contained in h�S�u���� Hence�

�ReH����x� � S�u��

is a measure zero subset of �Re h����x�� Since U
 comes from the com�
plexi�ed di erential of u� � d�Reh� and d�u�� coincide of the regular
part �Vr� This implies that a �bre of Re h is a connected component of
a �bre of u� � Therefore� we have a factor map�

eV RdimU�

��G�

Reh

�

u�

�

�

�
�
�
�
��R

The di erential d� is equal to � with respect to some isometric coordi�
nate systems on Rdimu� and ��G�� Hence� � is an isometric submersion
and its image is a #at submanifold T 
Rl where T is a torus� Since it
is the image of the pluriharmonic map u� � if one direction is bounded�
then this direction vanishes completly� Therefore� ��RdimU�� � RdimU� �
a #at in ��G�� Because ���jV �xes this #at� it cannot be Zariski dense�
A contradiction�

We want to show that ��� factors through g in Case ��� Pulling g
back to the universal coverings� u� factors through �g�

eXs fW

��G�

�g

v

u�

�

�

�
�
�
�
��R

and the action of ��� on u�� �Xs� factors through ���W �� Let �u� be
the minimal convex subcomplex containing u�� �Xs�� Since any � �
���g

������ goes to � � ���W �� �������g
������� �xes u�� �Xs� and hence
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�u� � Since u�� �X
s� is unbounded� �u� contains at least a geodesic line

L� and �������g
������� �xes L� By Lemma ���� ������g

������� cannot
be Zariski dense� Since ��� is Zariski dense� Lemma ��� says that ��
factors through g� We again take the Shafarevich map with respect to
���� It descends to an f � X � Y with dim Y � dimW � rkK�G�� and
� factors through f �

Proof of Theorem ��	� The algebraic group G � SLn is in fact
de�ned over a number �eld K after some conjugations� Hence� the mor�
phism Rep�G� � MB�G� from the space of representations of �� into
G to its moduli space is de�ned over Spec�OK� by Seshadri	s geomet�
ric reductivity theorem over an arbitrary base� We take a completion
Kp � K for a prime o� and let OKp be the ring of the algebraic integers
of Kp� The OKp�valued points in MB�G� correspond to the represen�
tations into G�OKp� after conjugations� If  is not an isolated point in
M�G�� we may �nd an irreducible algebraic curve S in M�G� passing
through  and containing in�nitely many nonintegral point fsgs�S� �
valued in some �nite extensions Es � Kp� Since the subset of Zariski
dense representations into a semisimple algebraic group is Zariski open�
we may assume that all fsgs�S� are also Zariski dense�

Let us � �X � ��G�Es�� be the equivariant harmonic map for s�
Since rkG�Es� � rkG� �Kp� where �Kp is the Galois closure of Kp� the
cardinal numbers of the Weyl groups �Ws of G�Es� are bounded� hence
the cardinal numbers of the root systems of �Ws are also bounded� This
implies that the characteristic polynomials ps�t� for us �see Lemma ����
have bounded degrees� So� we may assume that all ps�t� for s � S� have
the same degree d�

Let � ��
Ld

i�� ��X�Sym
i$�

X�� Then the subset of all characteristic
polynomials of degree d is an algebraic subvariety W � � �see 
���
Section �Hitchin proper map��� By taking the Zariski closure

V �� fps�t�gs�S� � W �

we obtain an algebraic family of coverings f	v � Xs
v � Xgv�V con�

structed in Lemma ���� Using Lemma ��� in the relative case� the
constructions in the proof of Theorem ��� can be performed relative to
V � in particular� the �brations ff sv � X

s
v � Y s

v gv�V constructed in the
proof of Theorem ��� are relative to V � Clearly� we may �nd a Zariski
open subset V� � V so that the generic �bres of fv for v � V� are homo�
topy equivalent� Furthermore� since fps�t�gs�S� is Zariski dense� there
are in�nitely many s � S� such that ps�t� � V�� we call this subset S

�
��
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Fixing one �bre f s��v�
� v� � V�� then 	�sjfs��

v�
� � for s � S�� by a�

and b� in Lemma ���� Since ff sv � X
s
v � Y s

v gv�V is Gal�fXs
v�Xgv�V ��

equivariant� it descends to a family of �brations ffv � X � Yvgv�V with
sjf��

v�
� � for s � S ��� Because the subset fsjf��

v�
� �js � Sg is closed in

the Zariski topology on S and S is irreducible� this implies sjf��

v�
� ��

�s � S� In particular� sjf��
v�

� �� Finally� by c� in Lemma ����  factors

through fv� after passing to a �nite etale covering and a blowingup�
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